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0. Introduction

Kuznetsov E1] (see also [12J) introduced

Kolmogorov-type construction in which he constructs a

stationary measure Om from a transition semigroup Pt(x,dy)

and an excessive measure m. In fact, his theorem has other

interesting consequences outside of the Markovian

framework, but we do not discuss these here. While

Kuznetsov's proof is "elementary", it is rather involved.

The purpose of this paper is to give an alternate

construction of 0m in the case of right processes. We

consider both the time homogeneous and time inhomogeneous

cases. Our construction does not extend to cover the other

.1 tinteresting cases of Kuznetsov's theorem, but our approach

may yield some insight into the measures 0m and may aid the

Research supported by NSF Grant DMS-8419377.
Research supported by NSF Grant DMS-8318204 and AFOSR
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reader interested in recent articles E5.10] in which the

measure 0 m has played an important role. Mitro E13] has

obtained a result similar to ours under duality hypotheses

on the underlying processes, but her construction is quite

different from ours.

We must confront squarely the complexities of the

subject soon, but first we try to introduce 0m gently to

-. the reader by discussing the example which motivated our

investigation. Let X - (0,, , t,XtOt,Px) be a right

process on a Lusin state space (E, 6) with semigroup Pt and

resolvent Uq . Let m be an excessive measure for X, and

assume that m is in fact a measure potential. That is,

m = pU for some positive measure p. We can "easily"

construct 0 m once we introduce the measurable space on

which Om must sit. To do this, adjoin a "birth" point a

and a "death" point b to E to obtain Ea. Let W be the set

of all maps w from R to Ea so that there is a non-empty

.4, open interval Jc(w),p(w)[ on which w is E-valued and right

continuous, w(t) = a for t < a(w), and w(t) = b for

t , p(w). Let Yt(w) = w(t), and let O0 = t E R).

For each t C R, define a map pt:C 0) + W by

1P(03(s )  Xs-t ) if t < s and s - t < C(w)

-a if ts

= b if s - t C(w).

Let Ot be the image of the measure P1 under the map pt:

note that Ot is a measure on (WXO). Then Om = JRO dt.



it is simple to check that

0.1) Qm(t"t c dx; a < t < p) - m(dx) for every t in ; and

(0.2) if tI < t2 < ... < tn , then

QM(a < t £,Ytl e dxl,...,Ytn c dxnftn <')

=mldx lP t 2 _ t lI lx l ,d x 2 ) . . . P t n -t n -l lxn -l pd xh I .

The key to this construction is the fact that m is a

measure potential pU. In general, excessive measures are

not measure potentials, but they can be decomposed into the

sum of an invariant part mi and a potential part mP. The

potential part can be represented as an integral of an

entrance law (v This proves to be enough to imitate the

steps above. The representation mP f;Vtdt is well-known,

but we do not know where a direct proof of it can be found

in the generality we need. In [4), Dynkin derives it as a

corollary to the representation of excessive measures in

terms of minimal elements. Fitzsimmons and Misonneuve 151

have a very nice proof using the existence of Q.. It is

proved for finite m in [91. In section 1, we give a direct

proof of the representation of mP (1.4). The decomposition

C. of m is summarized in Theorem (1.10). Section 2 contains a

generalization of this representation for entrance rules

for a time inhomogeneous transition operator Ps. The main

result is Theorem (2.11). Section 3 contains the

construction of Cm . In fact, we proceed more generally and

construct the measure corresponding to an entrance rule and



a time-inhomogeneous transition operator P5 "

We make the following suggestion to the reader

interested only in the case of an excessive measure m and a

(temporally homogeneous) right process with semigroup Pt.

After reading section one, read the interpretation of the

representation (1.10) given in the paragraph just below the

statement of Theorem 2.33; in particular, the form (2.34)

of (1.10). Then read section three with Ps Pt-s for s <t -

t and use (1.10) - that is, (2.34) - in place of (2.33) in

the proof of Theorem 3.8.

We use what is essentially standard notation. Here

are a few examples. Let E be a set and Jr a class of

numerical functions on E. Then bJe and pal" denote the

classes of bounded and positive functions in X,

respectively. If (E, 9 ) is a measurable space, then 9 is

used to denote both the underlying a-algebra and the class

of all 9-measurable numerical functions on E. Thus, for

example, bpg = pbq is the class of bounded, positive,

measurable functions on E. Also 9* denotes the a-algebra

of universally measurable sets over (E,4J). If p is a

measure on (E, 1) and h E p9 , then h or hop denotes the

measure h(x)p(dx). If (F, r) is another measurable space

and o is a measurable mapping from (E,ir) to (F,3), then

o(p) is the image of p on (F,Jr); that is, 0(g)(A) =

P[OI (A)3 for A O Jr. As usual, R denotes the reals and

S(R) is the a-algebra of Borel subsets of R. Similarly,

R denotes the positive (i.e. non-negative) reals and

the Borel a-algebra of bilty Coe

D0t O 0 Special

ge N4.



1. Excessive Measures of Right Processes.

Fix a U-space (E, 4) (i.e. E is homeomorphic to a

universally measurable subset of a compact metric space),

and let X - (Q, s . itXt, tPX) be a right process on E as

V.- described in E63. LLt (Pt) and (Uq) denote the semigroup

and resolvent of X, respectively.

(1.1) DEFINITION. A a-finite measure m on (E, 9) is said

to be excessive for X (or Pt or Uq ) if mPt < m for every t

• 0. (Here, mPt is the measure defined by mPt(f) =

m(Ptf)).

It is well known that an excessive measure m also has

the property that raPt(f) increases 'i m(f) as t decreases

to zero for every f E pS; e.g. see (8], (1.4)).

(1.2) DEFINITION. An entrance law for X (or Pt or Uq ) is

a family of a-finite measures (vt)t.0 on (E, S') so that

V =v +s- for every t > 0 and s ) 0.

Note that t + v t(f is 5"()-measurable if f c p
4t.tf

The main result of this section is the theorem below

connecting an excessive measure m with an entrance law

V But first, we introduce the following useful

convention.

(1.3) NOTATION. Let (m) t ER be a collection of a-finite

measures on (E. S') with mt 1 mt+s for every s > 0 and for

every t C R. Then there exists a unique a-finite measure

on (E,4') so that whenever f E pit with ms(f) < - for some

4*,,. -;. -. _



c £ R, one has %(f) - flit,. m f). We write u limtmt.

Also, if p and v are a-finite measures on (E. 4r) with

c v, then there exists a unique a-finite measure A with

+ ) - v. We write X - - v.

(1.4) THEOREM. Let m be an excessive measure for X so

that limt+ MP t - 0. Then there is a unique entrance law

(vt)t>O so that m = fOvtdt.

PROOF. Choose f E bg with f > 0 and m(f) < . Since m is

excessive, m(Uqf) < w for every q > 0. Let At be the

increasing function on J0,-[ defined by setting

At ='-mPtUqf = -e q t f e 'q u M P
u (f d u .

Since At is the product of two locally bounded absolutely

continuous functions, At is absolutely continuous on

bounded intervals. Therefore, dAt is a positive measure on

]0,-[ which is absolutely continuous with respect to

Lebesgue measure. If g e pd , define the increasing

function At(g) on J0,-[ by setting At(g) - -mPt(g). Note

that if re(g) < -,then I

f;dAt (g) = limr 0 Pr(g) - limr+umPr(g) - m(g).
9

In what follows, 0 1 c c f, and c may change from line

to line. If 0 < g < cUqf, then cAt = At(g) +

At(cuq - g). Since both functions on the right side of

this last equality are increasing, it follows that

dAt(g) << dt. Consequently if g e 4r and IgI < cUqf,



dAt(g) defines a signed measure on 30,-E that is absolutely

continuous with respect to Lebesgue measure, where At(g) -

-mPt(g) for such g. Let dAt(g) = Ht(g)dt with g as above

and with Ht(g) being a finite Borel measurable version of

the density. Set E0  {uqf 1) and

En = {(n + 1) - 1 < Uf < n- ) for n ) 1. Since f * 0,

E= Un)O Enn If g e bit, then JglE I C'cuqf and so

dAt(glEn) - Ht(glEn )dt. Let (gk) C P4f be a sequence

increasing to g C bir. Then Ht[(g - gk)IEn] C Ht(glEn) and

f;Ht~glEn)dt = m(glEn) < m(cUqf) < -. Hence we may apply

the dominated convergence theorem to conclude

Jlim Ht[(g - gk)IE Jdt = lrm foHt[g - gk)lEn]dt
k n k n

= lim m(g - gk)IE = 0.
kc n

This shows that Ht(gklE ) increases to Ht(gln) a.e. (d)
n t~ln

as k approaches infinity. By a standard result on

regularizing pseudo-kernels ([7], (4.5)] or ([2), IX-l and

13) there exists a bounded kernel pt ( * ) from R4 , 5(RM)) to

(E,,') that is carried by En so that Ht(gln) nt(g) a.e.

(dt) for g E bit. Set

not= Zn)0 't -

Then pt is a kernel from (Re , X(Rt)) to (E,-C). Let

g c pbit with m(g) 4 - and let gn = Zk 0 glk Then

f;dAt(g- gn) m(g - .0

iN'p
-r-'



as n . -. and so the positive measures dAt(gn ) increase to

dAt(g). Consequently

dAt(g) - Pt (g)dt

for g E pbe with m(g) < - and then with one more passage

to a limit for g e pLl(m. Moreover m - otdt. Since on

30,-1, pt+t,(g)dt - -dtm(Pt+sg) = dAt(Psg) pt(Psg)dt and

Pt(g) < - a.e. (dt) for g c pLl(m), we have

* t+s(g ) = pt(Pg) a.e. (dt). But 4F is countably

generated since (E, 4r) is a U-space, and so for each s ) 0

(1.5) Pt+s M PtPs a.e. (dt).

Thus (pt) is a "crude" version of the desired entrance

law which we shall obtain by "regularizing" (pt) as

follows. Let L be Lebesgue measure on R+. Applying

Fubini's theorem to (1.5), we obtain

fl(pt+s#ptPs) ds dt = 0.

That is, there is a set r C e+ with L(rc) = 0 so that for

each t in r, there is another set At) = At C R+ with

L(A ) = 0 and P = P for every s in At . Choose a

sequence (tn ) C r decreasing to zero so that 1tl)(Uqf) -

for each n. (This can be done since ptlUq f) - a.e.).

For s 0, define

n n

(16 -V t -8 P



Note that

1.7) + - t for every s C A(t n),

tn +8 n+

and

~n+l

18) Vt+l +(t -t )+s = At Pt -t +s
n+1 n n+l n+l n n+l

But whenever tn - tn+I + s is in A(tn+)

Atn+ Ptn-t.+s -- Pt +so

Since L(A(tn~C u A)tn) ) = 0, we have
n n+1

AtnPS = tn P -t + a.e. (ds).

In particular, whenever 0 < g < f,

AnP5Ug = t a.e. (ds).

Since each side is finite and right continuous in s, they

agree for all a; that is,

AtnPsU q = Atn+l Ptn tn+l+s U q .

By the uniqueness theorem for potentials ([8), (1.1)), this

implies

4,...v

Ptn P a tn+1 Ptn tn+l+S

-4Nei



Thus, for every s > O, using (1.6) and (1.8),

n n+l
Vt n+S -t n+l+(t n-t n+l)+s

If t > tn

1 n n+l n+l
(1.9) Vtn+(t-tn) tn+l+(t ntn+l )+(t-t n) t n+l+(t-tn+l).

Define

Vt = limn Vtn+(tt)
npm = n Itt

If t > tn and if s > 0, then (using (1.6)) vt s =V n it
follows that (v ) is an entrance law. By (1.7) and (1.9),

t

Vt = Pt a.e., so m = Jvtdt.

To prove vt is unique, let yt be another entrance law

with m = Jytdt. Then

mPs = fOytPsdt = fryt+sdt = f0ysPtdt = ySU.

Similarly, mPs = VsU. Since mPs 4 m, and m is a-finite,

s= V by ([81, (1.1)). Q.E.D.

* We can now give the representation of an excessive

measure which was mentioned in the introduction.

(1.10) THEOREM. Let m be an excessive measure for X.

There is a unique invariant measure mi (i.e. mipt -m i for

ever t > 0) and a unique entrance law vt so that

m = mi + f0 vtdt.

- -
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This is an immediate consequence of Theorem 1.4 since

it is well-known and easy to check that mp - limt,.mPt

defines an excessive measure satisfying the hypothesis of

(1.4) and that mi = m - mP defines an invariant measure.

Also see the discussion following the statement of Theorem

2.33.

2. Representing an entrance rule.

Fix a U-space (E, ). For each s and t in R with

s t t and for each x in E, let P(sx; t,dy) be a sub-

probability measure on (E, ?). For each s < t, define

Psf(x) f P(s,x; tdy)f(y)

whenever f E bd'; Ps is called a transition operator ift

(2.1), (2.2), and (2.3) are satisfied:

S(2.1) (s,t,x) P Pf(x) is a(R) X R(R) X

measurable for each f E bd'.

F2 (pf) t = PSf whenever s t t < u and f c bE.(2.2) P ( ) P

U

(2.3) For each s C R, Psl increases to I

- as t decreases to s.

':e also need a type of "right" hypothesis.



(2.4) DEFINITION. A function ht(x) is called an exit rule

if h t e P** for every t and if, for each s, Paht increases

to h s as t decreases to s.

REMARKS. (i) The argument in Dynkin (33, Lemma (5.1))

shows that a finite exit rule must be 5(R) x 0i

measurable. Standard arguments show that any entrance rule

is an increasing limit of bounded entrance rules, so every

entrance rule must be X(R) x R*-measurable.

(ii) Note that ht is an exit rule provided the

function H(t,x) = ht(x) is excessive for the homogenous

space- time semigroup

Tt((rx); de x dy) = Cr+t (ds)P(rx; t + r,dy).

The last conditic- we assume for Pe is the following.

(2.5) For every bounded continuous function f on E and

every bounded exit rule ht , lim P9 (fh ) = fh 5 -

If Tt is a right semigroup of a right process [63, then

(2.5) is satisfied. In particular, if Pe = Pt- is a time-

homogeneous right semigroup of a right process, then (2.5)

holds.

(2.6) NOTATION. If v is a a-finite measure on (E,S), then

VP 6denotes the measure defined by vPl(f) = V(P f).
t t

(2.7) DEFINITION. (i) An entrance rule for (PO) is a

family of a-finite measures (vttR on (E,) so that for

' . ,' V. " , , . . ,



each t in R v aP increases to v t an s increases to t.

(ii) Let -w 4 s 4 w. An entrance law at a is an

entrance rule (vt) so that v 0 if t 4 a and vtW V-

whenever s < t 4 u.

(2.8) REMARK. One.may apply an argument simila. to that

used in Dynkin (33, Lemma (5.1)) to show that whenever

(vt) is an entrance rule t + vt(f) is 5(R)-measurable for

f e pg. This result may also be obtained as a corollary

of Theorem (2.33) below.

(2.9) LEMMA. Let (vt) be an entrance rule for (Pt). For

each t e R, there is a function ft(x) on E so that

0 < ft(x) 1, Vt(ft )  1 1 and (t, x) + ft(x) is 5() xJ

measurable.

PROOF. For each t, vt is a-finite, and we may choose an

9 -measurable function kt with 0 < kt < 1 and vt(kt) c 1.

For each rational number r, choose a r ) 0 so that

x ar 1, and define

(2.10) ft(x) Ert r- E arP Wr(X)

By (2.1), (tx) * ft(x) is S(R) x*-measurable, and ft(x)

(<rEG ar 1. Moreover,

St =r tr t r Er•tarvrlkr) 1

since v r(k r ) 1. Recalling (2.3) and the fact that k r

0, we see that Ptk x 0 for somne rational r t.
;kpx



Therefore ft(x) ) 0. O.E.D.

-?;'4'2.11) THEOREM. Let (v ) be an entrance rule for (PO) so
- t

that lims.5 .v s t P 0 for each t E R. Then there is a

finite measure 4on (R, S(R)) and a collection of measures

R(V so that

(2.12) for each s e R, v s  V is an entrance law at

for (pr).

(2.13) for each f 4 p6r, (s,t) + v5 (f) is
t

S(R) x X(R) - measurable;

(2.14) for each t E R, vt R *(ds).

In addition, there is a strictly positive function gt(x) in

SR) x*"6 so that vt(g9l <- for every t and s.

PROOF. Step 1: Reducing the Problem.

For s < t, define 08 = e'(t'S)Pe, and set Pt - etv t . One

can easily check that O is a transition operator and (p

is an entrance rule for (08) with lims _s - 0. Thus,

,(( and (08) satisfy the hypotheses of the theorem and

have the following extra property:

--.Joal dt Ce(t-)dt . 1.

We now observe that it suffices to prove the theorem for

and (08). For suppose we can produce a family of

, -..



entrance laws (ps) 5 (4*) for (0) and a measure # so that

- P8(dS) Set v e Pt Then v 0 et N40d).

If s < t < u, then v t ete Ou - e u a V We now

devote our attention to proving the theorem for (js) and

Let (ft) be the functions described in (2.9) relative

to (Ps), and define

(2.16) 9s f Sotftdt.

Then g. ' 0, (s,x) * gs(x) is R(R) x --measurable, and,

since ft < 1,

-. <s f l dt < 1.

Also, since v t(f t ) 1,

(2.17) pi5Cgs ) = fpssotftdt < J:e t e -s <
V t ft e

(2.18) pt(ft) 1 et

If s < t, then

5aW.t

(2.19) Otgt M Otftufudu fOufudu Cgs,

and as t decreases to s, OQg t increases to gs.

Consequently, gt is an exit rule for (Or). If one defines

0 (xdy) g,( lo10(x, dyigt(y)an
t( gtadt, then Ot is a

transition operator and ( (t) is an entrance rule for

(t) which satisfies ;t(1) 'w for all t. This additional
is., 

-



reduction does not seem to be particularly useful in our

C "construction, and so we shall not use it.

step 2: Constructing s.

For each t in R and f E pt, define an increasing function

on 3--,t[ by setting

(2.20) A(tf;s) - pa (f)

Note that lim6+tA(tf;s) Pt(f) and lirs. A(tf;s) = 0,

Sprovided p(f) < If pt(f) < -, then the increasing

function A(t,f~s) is the distribution function of the

measure d(tf)(ds) = d A(tf;s) on 3--,t[. Note that

W(t;f)(R) pt(f). If 0 4 f 4 gt, then W(tg t ) = d(tf)

+ d(t,g t - f), so d(t,f.) << .4(tgt). We let t

.4(tgt), and we observe that #t is a finite measure on

3-0,t[ since pt(gt
) < e •

Note that W(ufu)(R) = pu(fu ) ceu by (2.18) and

that u * O(ufu)(h) is 5(R)-measurable whenever

h p4t. Set

(2.21) f- 5m (uf )du.

Since d(u,f u) is c rried by )--,u[.

t- j4(u fu )([tr)du

4 >:.WlufllR)du < e t .



V, Therefore, 4 is a Radon measure. (We shall observe at the

end of the proof that # can be replaced with a finite

measure as promised.) From the definitions of gt and 4t ,

we have

4 t  (I.t~.(Ufu)du)lj.M.tt * -

Therefore, there is a function pt(s) so that #t(ds) -

pt(s)t(ds) with 0 1 pt(s) < I and Pt(s) - 0 if t < s.

Since t 0 stg is Borel measurable on Is,-[, t may be

chosen jointly measurable in (st) (2), V.T.58).

Step 3: Disintegrating .d(tf).

From Step 2 and ([2], V-T.58), we know there is a density

a(tf;s) which is jointly measurable in (st), so that

d(tf)(ds) - a(t,f;s)$t(ds)

whenever 0 4 f < cgt . (Here c is any positive constant.)

If jfj < cg t , then W(t,f)(ds) = d p0Qa(f) defines a signed

measure which is absolutely continuous with respect to t

Hence f(t,f)(ds) - (t, f;s)*t(ds) whenever jfj < cgt.

(The rest of this paragraph is a kernel construction

analogous to the one in the first paragraph of (1.4).) Let

E0 = {gt 1) and En  ((n + ) gtn" ). If f e pg.

then

Af (t'flEn )ds) ) (tflE ns)t(ds)



since IfI < if n + 2)9t on E~. Suppose (hk) C b* is a

sequence of functions decreasing to zero. Then if
J. !i D € ae(R),

a(thklEn )(D) c h (thklE n)(R) - t(hklE )

and this last term goes to zero as k increases to infinity

since hk < Vhll and p t(En) c (n + l)Ct(g t ) < -.

Consequently, if (hk) C bg is a sequence of positive

functions increasing to h, then (t,hklE(n);*) increases to

a(t,hlE).) a.e. ( t). By a standard result on kernels
E(n);')

([73,(4.5)), there exists a bounded kernel Kn(sdx) from

S(--,t[,S(]--,t[) to (E, S) which is carried by En so that

for each f E bd, (i) (s,t) + Kn(sf) is S(R) x R(R)-

measurable, and (ii) (t,fl r-) = K (*,f) a.e. (,t).

Set

Kt(sf) n)oKt(s,f)

Let f E bg with t(f} - and let

hn =En 1 f.
kOk

Then ,A(t.f - hn)(R) 4 pt(f) < -, and it follows that

Za(t'hn;.) increases to a(tef;e) a.e. ( Hence

' W (t, f)(ds) K Ktls,flctl ds)

s.

whenever pt (f) < -"

if a t < u,



ASuf p 0 t A(t, Qtf.),

;o .4Cu,f) - A(t,Otf) on )--,t[. This impliestf

K, (Sf)t (dS) Kt(s,O f)t(ds) on J--,t[ or

P (s)Ku (f)(ds) = p (s)Kt(sOtf)(ds) on ]--,t[.

Since is a Radon measure, we conclude

(2.22) pu(s)Ku(s,f) = pt(s)Kt(s,O tf) a.e. W41 in s

%n [--,t[.

Set.
-'.

(2.23) k(f) ft pt(sl]Kt(s,f)

Then (s,t) * ke(f) is 6(R) x X(R)-measurable for everyt
f E pC, and t= 0 if t < s. Now (2.22) implies that fors tf

U, s(f) - ktu ) a.e. (0) in s on --,t[. Since Xu

and x. are a-finite measures, we have that if t < u,
t

k (2.24) x a kt u a.e ($) in s on J--,t[.

Also,

ks (d s )  f]-., t[ Pt(s)Kt(s,") $(ds)

" = I]~~~f,..,t[Ktls,.)Ot(dsl (,l)l=p(l



So (k 9) is a "crude" version of the desired family (08).

Step 4t Regularizing (k).

By the results above and (2.17),

Aa
t :(gt1$(ds) - pt(gt ) 4 e~ t

Thus, for each t, X- a.e. (1. In particular, if L

denotes Lebesgue measure on R, and if

r r r

n = ((r,u) : r < u, x r (g r = ,r u

a.e. L in t on (u,-)),

then by (2.24),

i:. f:. nc(ru)l~ r(dr)L(du) - 0.

By Fubini's theorem and the change of variables a. u + r,

we may rewrite this as

J: jO 1C (ru + r)L(du)t(dr) = 0.

Thus there is a set r C R with () = 0 and so that if

r E r, then

r

(2.25) u(gu.) -9 a.e. (L) on {u > 0)

A~" -1.



(2.26) k' 0u+r a.e. (L x L) on
t U+rt

((t,u) u O t ), u + r).

From (2.25) and (2.26). we know there is a sequence (un)

decreasing to zero so that

(2.27) kr = r t 0n .e. (L) on it : t 3 u + r)
t u +r t n

(2.28) (g
)u +rC un+r)'',n n

Set sn = s(n) = un + r, and note that sn depends measurably

on r. For each n, (2.27) implies there is a set

An C Isnow[ of full Lebesgue measure so that

(2.29) Kr . r 0Sn for all t A.
t n t. n

Define

(2.30) t k r 0 nfor t n

n

Notethatyn r for every t in If t

n+1 . r 0Sn+l

But if t A r A then
n n rr

(2.31) a t n t rS 0 nt

t. a n~ t, t lt



Since gt is an exit rule for Qt. it follows from (2.5) that

Can (fgt) and ogn+l(fgt) are right continuous 
in t on

t . t

Un,-[ whenever f is bounded and continuous. Since

L((An V An+ )ls ,-E) 0 0, we conclude that

X r n .n r 0-n+l for every t > s a
Sn t  n tnn+l1

Thus for each t > r e r, the limit

(2.32) r = lm r 0 n
Pt n+4w rn t

exists, and for each r, (pt) is a (Qs)-entrance law at r.

if rj r, set P- . 0 for all t. By (2.31), for every r e r

) AtP r XnrAnt roPSor a.e. (L) in t on-and t ntk on t t a
]r,m[. Let 0 = ((r,t) : * X ). Then

f J(r,t)L(dt)f(dr) = 0. Applying Fubini s theorem, we

see there is a set G C R with L(Gc) = 0 so that for every t

in G, p= t a.e. (f). Since f Xr4(dr) = we have

f Pr#(dr) - for every t in G. Fix t E R and choose a

sequence (tn) C G increasing to t. Then

- tnr (dr) f r t(dr).• n n 3- ,tnE tn

so

tn "f r tn

Pt n = f r _tn (dr) = J .. p ,(dr).

J-,t(tnn

Since (pt) is an entrance rule, Pt (n) increases to pt

as tn increases to t. The integral increases to

4.



r.dr) - f4r,(dr),

and we have shown that p Jr (dr). Now we show that

,r(t) ( , for every t and r. If r I r, this is clear

scer r*Le
since pt . Let r e r and recall that P r ra.e. (L)

in t on 3r,m[. By (2.25), Ptr(g ) < - a.e. (L). In

particular, there is a sequence (t(n)) decreasing to r with

r (g n) <  But if u , t(n), p u(u r ( Pn (n) )
Pt~n)t~n) u tn) u

t(n)(gt(n) since gt is a (O4)-exit rule.

This essentially finishes the proof: we have produced

the desired (pt). All that remains is to observe that we

can replace t with a finite measure if desired. To do

this, choose a strictly positive function z on R so that

Set Pt Z(s) p t and

j(ds) = z(s)l(ds) O.E.D.

REMARK. Theorem (1.4) can be obtained by carefully

checking through the proof of (2.11). It does not seem to

be en immediate corollary of the statement of (2.11).

*We can now give the representation of entrance rules.

(2.33) THEOREM. Let v (v t ER be an entrance rule for

(ps). Then for each 9, -m c s < -, there exists an

entrance law at s, vs = (vs) and a finite measure * on R so

that

C() (s,t) * ve(f) is S(R) x X(R)-measurable; and

t

V(i) t v + fRvtt(ds) for every t e R.

7-



Before we give the proof, let us re-interpret the time

-9 "homogeneous situation (1.10) in this context. If we set

v= m for every t, and Pe Pt_,, then vt is an entrance

rule for P. Set vt m for every t and for each s c R,

set v t- t ) s, t 0 if t C s. In this case, we

may take (dt) dt-to obtain

(2.34) +(ds).(2.341 m = vt + fR vt ls-

PROOF of (2.33). By definition, the measures v Ps decrease

as s decreases to -i. For each t, define

Pt = lim VpS.Pt Then pt is a a-finite measure with

pt 4 V t Let f E p9 with v t(f) < -; then for s < t,

s rs6
SP f =limr+_ Vr p  f = lim r+- VrP f =Pt(f)'

*:: so P= (Pt) is an entrance law at -i. For each t C R,
t t FR

Xt =v t - Pt is a a-finite measure and X = ( t ) is an

entrance rule such that lim Pt = 0. Apply Theorem

(2.11) to X and set v = p to obtain

Vt = Pt + Xt + Rvt (d s )

'

-p.

.9

p.



3. Constructing the measures.
J .

In this section, E denotes a Lusin topological space

with Borel field 6 (i.e. E is homeomorphic to a Borel

subset of a compact metric space). In what follows, it

would suffice to assume that E is a cosouslin metrizable

space, but we leave such an extension to the interested

reader. Fix a transition operator (Ps) on (E, R)

satisfying (2.1), (2.2), (2.3) and (2.5). In order to

state our last assumption on (Ps), we need to introduce

some notation.

Let b be a point not in E, and set Eb = E u {b}.

4Topologize Eb so that E has its original topology and b is

isolated in Eb. Then Eb is -a Lusin topological space and

the trace of its Borel field 4b on E is 6. We adopt the

usual convention that a numerical function f on E is

extended to Eb by setting f(b) = 0. For -- r < -, let Wr

denote the set of all right continuous maps from Jr,m[ to

Eb with b as cemetery. If t > r and w E Wry let Yt(w) =

w(t). Set Wr = a{Y t = t > r), and set p(w)

inflt : w(t) = b). We now state our last assumption on

(PS).

(3.1) ASSUMPTION. For each x c E and r E R, there exists

a probability Px,r on (Wr , r I so that if r < tI < t2

< tn , then

Px,rlYti E dyl,...,Ytn c dynt n <)

.'I

pr(.dy h i",l(yl'dy2 ) ... Pl (ynl"dyn)

ti t2



-f-. Wjq - I

(3.2) REMARKS ( ) By (2.3), P81 decreases to I as t

decreases to s. so limtrP, rt C p) - 1. Thus Pxr is

carried by (r ' p). It also follows from (3.1) that

x + Pxr(F) is J-measurable whenever F £fr"

(ii) If the space-time semigroup defined in Sec. 2 is

the semigroup of a rAght process on R x E, then (3.1)

holds. In particular, if P t-s. writ
t f. where (P)Is the

semigroup of a right process on E. then (3.1) holds.

(iii) Let r e R, and set W+ (W C Wr liusw(s)

exists in Eb). In the usual set up for right continuous

strong Markov processes, one obtains the measure Px,r

concentrated on W+. We do not need this stronger

assumption here: (3.1) will suffice.

(iv) Since Eb is a Lusin space, it follows easily

from IV-19 of [1 that (Wre 1r) is a U-space. We need this

fact below.

The usual result on constructing measures via inverse

limits is stated for probabilities. Here we need a version

which will work for a-finite measures. We state it here;

its proof is given at the end of this section. First,

N recall the definition.

(3.3) DEFINITION. Let (FnJn)n I be U-spaces and let

U. : Fnbe + Fn e rn+l/'n-measurable* The inverse limit

(F,.3) of (Fn , nJpn) is the subset of n F consisting of

those x - (xk) with Pk(Xk+l) - xk for each k ) l and

Jr. (qk : k ) 1), where qk is the natural projection qk

(xn) + xk .

- N



(3.4) THEOREM. Let (F n, 3n)n be U-spaces and let p. s

Fn+1 * Fn be 3rn+l/n-measurable. For each n. let Pn be a

measure on (Fn• jn) so that p= *n" Assumep -

finite. Then there exists a unique a-finite measure p on

(F• ?) so that qn(p) = pn for each n ) 1.

The next result is the basic step in our construction.

(3.5) PROPOSITION. Let v - (v ) be an entrance law at r•

t

- € r < =. Then there exists a a-finite measure 0 on

(Wr• 1r) so that 0(p - r) = 0 and if r < t 1 < < tn•

then

(3.6) O(Ytl e dyls . e. Yt n dyne tn <

tl tn- I.
V VtI (dyl)Pt2(yldy2 ) t n-ldyn

Note that • r on Wr . The uniqueness of 0 will

follow from the main Theorem (3.8) of this section.

PROOF. Let (s n ) be a sequence of numbers which strictly

decreases to r. For the moment, fix k ; 1, and for n ) k,

set kwn _ Ws(n) r {sk < }. Since a Borel subspace of a U-

space is a U-space, it follows that kwn is a U-space, and

its Borel a-algebra k Vn is the trace of fs(n) on kwn.

For n ) k, let Pn : kWn+l . kwn by restriction; that is.

Pnw(t) - w(t) for t > o n ' Note that the image of kwn+l

n (kWn+l) is not all of kwn. In fact, it is the set

s (n) r)k ( 0) defined in (3.2111). But Pn is
kljn+l/kTn-measurable• and it is clear that Wr s k

may be identified with the inverse limit of



(kWnlk llnpn)nlk . In fact, qn(Wr (sk. } . pc(kWn+l),

where qn is the map from Wr to Wsn) defined by

restriction. For each n , ke define k0 n on (kLnk n) by

setting

(3.7) kan(F) J jVs(n)(dX)Pxs(n)(Fisk -

One may check that pn(kon+l) . kon since v is an entrance

law. Let fk > 0 with Vs(k)(fk) < o. Then fk(Ys(k)) > 0 on

kwk+l, and kok+l(f(Ys(k))) ( vs(k)(fk) -. Therefore,

kok+l is a-finite. Let kq;r be the trace of 1 r on

Wrfl ) (a k . By (3.4), there exists a a-finite measure

ko on (Wr r) s k < k d}, r ) so that qn(kQ) = kon for

n '> k. We now regard k0 as a measure on Wr carried by

sk <). Set so - , and for k ) 1, let k0 =

1{s(k)<pcs(k-l))k 0. Then set 0 = kI)1 k0 . Then 0 is a a-

finite measure since each term in the sum is a-finite and

they are carried by disjoint sets. If r < tI 1 ... < tn,

then

MY" 0tl E dyI oeY n dyn 'tn • 1
r 0 dC... dl ,od#Ytnd

= Ek)l t dyI , .Ytn dYntn k S O P k

Since the * k decrease to r, there is an integer N so that

4 t1 . Since the event kAn = ( dyl, ... Ytn F dyn,
1 IIItn < C s k-12 SO rz k N, we may rewrite thie sum as



" .k)lIV a(N)(dX)Px, (N) Yti E dyl...,eYt n dyn.

t n < 0 C Sk-lf 0 ' sGO

W IV s(N) (dX)Px, s{N) {Ytl C dYl,...,Yt n C dYn.;tn -c

tI t1 2 nN (d 1P2Y Y2) pnl(Y- dn

since vt is an entrance law. Finally, observe that

O(p = r) = 0 because k 0 is carried by {s k < P).

Now we come to the main result. Let a be another

point not in Eb. Adjoin a as an isolated point to Eb to

obtain the Lusin space Ea with Borel field &a. Let W be

the set of all maps w from R to Ea so that there is a non-

void open interval Ja(w),p(w)[ on which w is E-valued and

right continuous, w(t) = a for t c a(w) and w(t) = b for

t • b. (Note that for each r, - . r < -, Wr r){P • r) may

be identified with W rl {a = r)). If w C W, let Yt(w) =

w(t),JrO= 6{Yt t teR).

(3.8) THEOREM. Let v vt) t  R be an entrance rule.

Then there exists a unique measure 0 on (W,3r0) so that if

t 1 < . < t n ,

(3.9) 0 r(a t,Ytl £ dyl,...,Ytn C dyn*t n

p I t n- I
Vtl (dyl)Pt2 (yldy2 ) "'" tn Pt "

1 2



Moreover, 0 is a-finite.

REMARK. Note that if 0 is any measure satisfying (3.9).

then 0 - 0 and 0 is a-finite. It is not necessary to

verify that 0 is a-finite a priori.

PROOF. For each rational r, we may choose a decomposition

of E, (Gr) C 9 so that v (Gr) 'a, sincev isa-
rk k)l r rk r

a
finite. Let v , -- < - be the entrance laws in the

representation (2.33). Recall from the statement of

Theorem (2.11) and (2.9) that there is a function ht(x) 0

in 5(R) x 9 so that v:(ht) <a for all s and t. Order

the collection of sets (G rkr) ( h r C 1 + 1): 1 ) 0,

k ; 1) into a sequence (E rk)k) so that UkEr = E,

Vr (Er) -and vr(Erk) < for every k and for every

.s E [-a,-[. Let Wrk - (w C W : Yr (w) E rk). Since

% Erk r Erj if k * J, Wrk r Wri = 0 if k * J. Because

:a(w),P(w)[ is non-void for each w e W, one has

r e O,klWrk W.

STEP 1. Unioueness.

Let 0 and P be two measures on (W,JXt0 ) for which (3.9)

holds. Then O(Wrk) ft vr(E rk P(Wrk). Let Ork and Prk be

the restrictions of 0 and P to Wrk. Then Ork and Prk are

finite measures on Wrk. Moreover, we have from (3.9) that

Ork(F) = Prk(F) whenever F is of the form

(3.10) F . n f. 0

J-1 j t



for tl *.. 4 tn , (fj) C bd, n ) 1. Such functions

constitute a multiplication - stable vector space whose
%n

tregtriction to Wrk generates the trace of Jeo on Wrk,

because (Yt - b) () Wrk is empty if t < r and (Yt = a) r) Wrk

,: is empty if t • r. Thus we have Ork Prk" It follows

that 0 = P.!I

STEP 2. Existence.

Let Os be the a-finite measure on (Ws,,5 V) carried bys

{s < p) constructed from v in Proposition (3.5). For each

s,-w s < w, define maps q.: W. r) (s < 1 * W by setting

-.4 qsw(t) = w(t) if t > s

=a if t < s.

Note that a o s and p oq = . Let so = qs(OS). Then

so is a measure on (W,OW) carried by (a = s). If tI <

• tn, then from (3.6) we have

CdyI, • • -' E t dYn, tn

(3.1)t ptn- 

8ti tl
= (dyl)Pt (yldy2) . Ptn (yn-,dyn)

2 n

and note that this is zero if tj c s. In particular.

nO(Wrk) vr rI • -. Thus each So is a-finite.

Next, we claim that s + sO(F) is Borel measurable for

each F f JrO. In view of the above and by "disjointing"

the Wrk, it suffices to prove this for each s + 6o(F r) Wrk)



with F of the form (3.10). but for such r,

t t t

(.12) Q0(F) I Jf(x)P If P 2 f Pt n-i f(x)* (dx
lIt 2 2 t 3 3 * n nIt

*44, Note that this expression is zero if s ; t, as it should be

since a - a almost surely s0, and that it is Borel

measurable in s. Consequently, so is s SO(F) for all

F jrO. Finally, define 0v on Jr by setting

(3.13) 0 (F) -- O(F) + JR SO(F)O(ds)

for F e J, 0 . Using (3.12) and (2.33), it is immediate that

(3.9) holds for Ova Moreover, 0 (W ) = Vr(Erk so 0
is a-finite. This establishes the existence of QO.E.D.

PROOF OF THEOREM (3.4).

Let hi be finite and strictly positive on Fi with

Pi l(hl) = 1. Define inductively hn+I ' hn-0 Pn for n ) 1.

Then hn E £r n , h n , 0 on Fn , and 1n(n) P1(h 1 ) I for

each n. Let v hnn . Then vn is a probability on

(F and one easily checks that pnVn+l) Vn. Hence

by (111-53, E13), there exists a unique probability v on

(F,.) with vn = qn(V). Define h on F by h(x) - hn(xn) =

"h o qn(x). (Here, x (xk)). Since hn+l(xn+l)

hn Pn(Xn+i) -hn(xn), h is well-defined, h E Jr, and h 

0. Let b h v. Then p Is a-finite, and one readily

checks that q (0) - Pn" Finally, the uniqueness of p
n qn

follows from the uniqueness of v -hp. Q.E.D.

~~~.~ %. p.
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